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(1) Abstract                                          
Energy confinement in tokamaks is believed to be strongly controlled by 
plasma transport in the edge region just inside the last closed magnetic flux 
surface, and a first principles understanding of these edge processes is an 
active field of theoretical and experimental research. The Boundary-plasma 
Turbulence (BOUT++) code is capable of nonlinear fluid boundary 
turbulence analysis in a general geometry. Using experimentally measured 
profiles as input, BOUT++ calculations show that typical C-Mod EDA H-
modes are ideal MHD stable, but become linearly unstable when the 
pedestal resistivity is included (! > 10-7 !-m). The computed resistive 
ballooning mode growth rate in such shots is shown to scale approximately 
as !1/3 and n2/3, consistent with theory. Inclusion of diamagnetic effects 
leads to a maximum growth rate at n ~ 25 and mode propagation in the lab 
frame electron diamagnetic direction, consistent with experimental 
observations. Incorporation of experimentally measured flow profiles has 
allowed the self-consistent calculation of the edge radial electric field. 
Nonlinear simulations have reached turbulent steady state, allowing for 
future comparison with fluctuation diagnostics. #

(2) Motivation 
•  The Quasi-Coherent Mode 

(QCM) reduces impurity 
confinement during C-Mod’s 
Enhanced D" (EDA) H-Mode[1], 
allowing for steady-state 
operation 

•  Unlike Edge Localized Modes 
(ELMs), the QCM is not a 
dangerous mode 

•  The high collisionality ("* > 1) 
of the EDA H-Mode suggests 
the use of a fluid code to 
investigate the QCM 

[1] M. Greenwald et al. Fusion Sci. Tech. 51 266 (2007). 

(3) C-Mod Experimental Input 

S ~107 in C-Mod EDA Pedestal, 
making it relatively resistive 

compared to ~108-109  

S = µ0R0vA
!

Separatrix 

Pedestal 

Zero 
Current for      
# > 1 

Open field 

5#6#21#2227372738#

Inertial Effects 
Dominate 

3
1

!" #
Fit gives 

exponent as 
0.35 ± 0.02 

[2]B.A. Carreras, et. al., Phys. Fluids 
30, 1388, (1987) 

(7) BOUT++ Calculations Consistent with  
Resistive-Ballooning Mode Theory[2] 

•  In the linear 
regime, the 
growth rate scales 
as !1/3 and n2/3 

•  Growth rates 
“rollover” as 
inertial effects 
begin to limit the 
plasma response 

Small discrepancies 
between simulations 
and theory may be 
due to the 
limitations in the 
Carreras model, 
which  employs a 
sheared slab 
geometry and is 
electrostatic 
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The mode propagates in the 
electron diamagnetic direction 

in the lab frame when 
diamagnetic effects are included, 

consistent with experiment 

• BOUT++ results show significant growth 
rates for n < 25, with a maximum at n ~ 25  

• Experimentally, the QCM occupies n~10-25 
• High mode numbers (n > 30) are damped 
• Note: Still attempting to replicate these 

results with latest version of BOUT++  
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(8) Inclusion of Diamagnetic Effects 
Reproduces Qualitative Aspects of the QCM                                          

(5) BOUT++ Calculations show C-Mod EDA 
H-Mode Resistively Unstable 

Linearly 
Unstable 

Stable 

!p ~ C exp !t( ), t!"

! = lim
t!"

d
dt
ln !p( )( )

Growth Rate Determination: 
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• No instabilities 
(i.e. ELMs) were 
observed in ideal 
simulations 

• ELMs are not 
experimentally 
observed during 
EDA operation 

•  Inclusion of 
physical pedestal 
resistivity excites a 
linearly unstable 
mode 

(4) Non-Ideal MHD Peeling-Ballooning Mode 
Equations Solved in BOUT++ 

! Hyper-resistivity !" 

SH = µ0R3vA/!H#6#SH#H  

is included in the 
physics module, but 
was not used in this 
work  

! After gyroviscous 
cancellation, the 
diamagnetic drift 
modifies the vorticity 
! Radial electric field 
is (1) read in from 
experiment or           
(2) calculated using 
force balance assuming 
no net rotation,  

Er0 = (1/2n0Zie)$!P0 

! Include resistive 
MHD 
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•  BOUT++ can now 
read in experimentally 
measured Er0 to self-
consistently evolve Er 

•  The diamagnetic 
contribution to Er0 is 
qualitatively similar to 
the total, justifying 
approach (2, above) 
for calculating Er0 if 
an experimental 
profile is not available 

2747832737#

•  BOUT++ calculations show that typical C-Mod EDA H-modes are stable to 
ideal peeling-ballooning modes but are unstable to resistive edge modes 

•  BOUT++ results are consistent with resistive ballooning mode theory 
•  Diamagnetic effects damp high toroidal mode numbers (n > 30) and produce 

mode propagation in the electron diamagnetic direction, in qualitative 
agreement with experimental observations of the QCM 

•  Plasma flow has been incorporated into BOUT++ simulations to self-
consistently calculate the edge radial electric field. Preliminary analysis 
indicates that it may not critically influence EDA stability.  

•  Ongoing nonlinear BOUT++ simulations will be compared to fluctuation 
diagnostics (Phase Contrast Imaging, Reflectometry, etc.) in order to better 
understand the physical origins and effects of the QCM 

•  Future gyrofluid modifications to BOUT++ may allow for more accurate 
simulation of lower collisionality plasmas (e.g. I-Mode)  

(11) Conclusions and Future Work 

(10) Turbulent Steady-State has been Achieved 
in Nonlinear Simulations 

Turbulent steady state allows 
comparison with fluctuation 
diagnostics  
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(10) BOUT++ Suggests that Radial Electric 
Field Minimally Affects EDA Linear Stability 

•  Inclusion of Er0 
does not appear to 
qualitatively affect 
the linear behavior 
of n = 25 mode 

•  Diamagnetic 
effects appear to 
stabilize the mode, 
in contrast to the 
behavior in 
2227372738 

•  Does Er0 
substantially 
influence aspects 
of edge 
turbulence? 
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