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1) Abstract

Energy confinement in tokamaks 1s believed to be strongly controlled by
plasma transport in the edge region just inside the last closed magnetic flux
surface, and a first principles understanding of these edge processes is an
active field of theoretical and experimental research. The Boundary-plasma
Turbulence (BOUT++) code 1s capable of nonlinear fluid boundary
turbulence analysis in a general geometry. Using experimentally measured
profiles as mmput, BOUT++ calculations show that typical C-Mod EDA H-
modes are ideal MHD stable, but become linearly unstable when the
pedestal resistivity is included (7 > 107 Q-m). The computed resistive
ballooning mode growth rate in such shots 1s shown to scale approximately
as #3 and n??, consistent with theory. Inclusion of diamagnetic effects
leads to a maximum growth rate at n ~ 25 and mode propagation in the lab
frame electron diamagnetic direction, consistent with experimental
observations. Incorporation of experimentally measured flow profiles has
allowed the self-consistent calculation of the edge radial electric field.
Nonlinear simulations have reached turbulent steady state, allowing for
future comparison with fluctuation diagnostics.
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* BOUTH+ results show significant growth
rates for n < 25, with a maximum at n ~ 25
* Experimentally, the QCM occupies n~10-25

* High mode numbers (n > 30) are damped

* Note: Still attempting to replicate these
results with latest version of BOUT++
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in the lab frame when
diamagnetic effects are included,
consistent with experiment
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11) Conclusions and Future Work

BOUT++ calculations show that typical C-Mod EDA H-modes are stable to
ideal peeling-ballooning modes but are unstable to resistive edge modes

BOUT++ results are consistent with resistive ballooning mode theory

Diamagnetic effects damp high toroidal mode numbers (n > 30) and produce
mode propagation in the electron diamagnetic direction, in qualitative
agreement with experimental observations of the QCM

Plasma flow has been incorporated into BOUT++ simulations to self-
consistently calculate the edge radial electric field. Preliminary analysis
indicates that it may not critically influence EDA stability.

Ongoing nonlinear BOUT++ simulations will be compared to fluctuation
diagnostics (Phase Contrast Imaging, Reflectometry, etc.) in order to better
understand the physical origins and effects of the QCM

Future gyrofluid modifications to BOUT++ may allow for more accurate
simulation of lower collisionality plasmas (e.g. I-Mode) V1 Reloace #: LINLPRES.515852



